My research interests mainly lie in the characterisation and applications of quantum walks, with specific focus on network analysis algorithms.

A major part of my research involves numerical simulation on high performance supercomputing clusters (mainly using the Pawsey supercomputing facility in Western Australia), working mostly with Fortran and Python. In order to streamline my workflow, I developed an efficient parallel framework for simulating continuous-time quantum walks, pyCTQW, with the source code available on my GitHub page. Other tools I find useful for my work include iPython, matplotlib, the amazingly extendable SublimeText, and of course Mathematica and $\LaTeX{}$.

Outside of research, I have worked as a tutor, lab demonstrator, and casual lecturer for undergraduate and honours physics units at UWA. I am currently applying my background in quantum computation at Xanadu Quantum Technologies in Toronto, working to develop the software front-end to their quantum computating system. I also enjoy science writing and communication - my writing has so far been featured in Australian Geographic and Science.


     google citations

  1. J. A. Izaac and J. B. Wang. Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions. Physical Review E, September 2017. [ Bibtex ] [ Link ]

  2. J. A. Izaac, J. B. Wang, P. C. Abbott, and X. S. Ma. Quantum centrality testing on directed graphs via PT-symmetric quantum walks. Physical Review A, September 2017. [ Bibtex ] [ Link ]

  3. Aaron C. H. Hurst, Joshua A. Izaac, Fouzia Altaf, Vincent Baltz, and Peter J. Metaxas. Reconfigurable magnetic domain wall pinning using vortex-generated magnetic fields. Applied Physics Letters, 110(18):182404, May 2017. [ Bibtex ] [ Link ]

  4. S. S. Zhou, T. Loke, J. A. Izaac, and J. B. Wang. Quantum fourier transform in computational basis. Quantum Information Processing, 16(3):82, March 2017. [ Bibtex ] [ Link ]

  5. Josh A. Izaac, Xiang Zhan, Zhihao Bian, Kunkun Wang, Jian Li, Jingbo B. Wang, and Peng Xue. Centrality measure based on continuous-time quantum walks and experimental realization. Physical Review A, 95(3):032318, March 2017. [ Bibtex ] [ Link ]